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Abstract

There is great potential for host-based gene expression analysis to impact the early diagnosis of infectious diseases. In
particular, the influenza pandemic of 2009 highlighted the challenges and limitations of traditional pathogen-based testing
for suspected upper respiratory viral infection. We inoculated human volunteers with either influenza A (A/Brisbane/59/2007
(H1N1) or A/Wisconsin/67/2005 (H3N2)), and assayed the peripheral blood transcriptome every 8 hours for 7 days. Of 41
inoculated volunteers, 18 (44%) developed symptomatic infection. Using unbiased sparse latent factor regression analysis,
we generated a gene signature (or factor) for symptomatic influenza capable of detecting 94% of infected cases. This gene
signature is detectable as early as 29 hours post-exposure and achieves maximal accuracy on average 43 hours (p = 0.003,
H1N1) and 38 hours (p-value = 0.005, H3N2) before peak clinical symptoms. In order to test the relevance of these findings in
naturally acquired disease, a composite influenza A signature built from these challenge studies was applied to Emergency
Department patients where it discriminates between swine-origin influenza A/H1N1 (2009) infected and non-infected
individuals with 92% accuracy. The host genomic response to Influenza infection is robust and may provide the means for
detection before typical clinical symptoms are apparent.
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Introduction

Infectious disease diagnostics traditionally rely heavily on

pathogen detection [1,2,3]. However, the development of repro-

ducible means for extracting RNA from whole blood, coupled with

advanced statistical methods for analysis of complex datasets, has

created the possibility of classifying infections based on host gene

expression profiling. We recently developed a robust whole blood

mRNA expression classifier for human respiratory viral infection

at the time of maximal symptoms using data from three human viral

challenge cohorts (rhinovirus, respiratory syncytial virus, and

H3N2 influenza A) [4]. Sparse latent factor analysis of peripheral

blood mRNA expression data revealed a pattern of gene

expression common across symptomatic individuals from all viral

challenges [4]. Furthermore, an analysis of publically available

peripheral blood-based gene expression data indicated that the

respiratory viral signature could distinguish patients with symp-

tomatic viral infections from those with bacterial infections as well

as from healthy controls [4,5].

The emergence of pandemic H1N1 influenza in 2009 highlights

the need for new approaches to diagnosis of respiratory tract

infections. A diagnostic test that could identify patients before the

onset of symptoms (but after exposure) who will later become ill

would be an indispensible tool for guiding individual treatment

decisions when antiviral supplies may be limited. Furthermore,
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these early results may forecast epidemic/pandemic spread,

potentially mitigating pandemic intensity [6]. Although previous

studies with dengue, melioidosis, tuberculosis, candidiasis, and

sepsis have focused on diagnosis in patients as they present with

active disease [7,8,9,10,11,12], we utilized human influenza

challenge cohorts with a defined inoculation event coupled with

dense serial sampling to explore the ability of modern genomic

and statistical techniques to accurately classify individuals with

multiple subtypes of influenza infection as early as possible

following viral exposure. Through this method, we have demon-

strated the potential for a robust host gene response signature in

pre-symptomatic human infection and suggest the utility of this

approach for detecting pandemic H1N1 infection in an acute care

setting.

Results

Healthy Volunteers Demonstrate Variable Clinical
Responses to Inoculation with Seasonal Influenza H1N1
and H3N2

For the H1N1 challenge we inoculated 24 volunteers age 20–35

with influenza A (A/Brisbane/59/2007). Nine (38%) of the 24

inoculated subjects developed symptoms consistent with viral

upper respiratory infection with confirmed shedding of challenge

virus (Fig. 1). This infection rate is similar to previous viral

challenge studies [13], and occurs despite similar patient profiles,

vaccination history, and baseline influenza hemagglutination and

neutralization titers (Sup Tables s1 and s2). Subjects exhibited

variability of time to initiation of symptoms as well as maximal

severity of symptoms achieved (Fig. s1), but symptom onset began

an average of 61.3 hours after inoculation (range 24–108 hrs,

median 72 hrs). Subjects who became ill experienced maximal

symptoms on average 102.7 hours after inoculation (range 60–120

hours, median 108 hrs). For symptomatic subjects, the average

total 5 day symptom score was 19.7 (range 6–34) with an average

daily peak of 7.4 (range 4–13, Table s3).

For the H3N2 challenge (A/Wisconsin/67/2005) reported

previously [4,14], we inoculated 17 volunteers (mean age 27

years; range 22–41 years). For the 9 (53%) symptomatic-infected

subjects, symptom onset began earlier than in the H1N1 challenge

(Fig. 1) at an average of 49.3 hours after inoculation (range 24–84

hours, median 48 hrs). Subjects who became ill experienced

maximal symptoms on average 90.6 hours after inoculation (range

60 to 108 hours, median 96 hours). For these subjects the average

total 5 day symptom score was 21.1 (range 6–43) with an average

daily peak of 7.3 (range 2–13).

For both challenge studies, only those individuals achieving

both clear clinical and virologic endpoints were analyzed as true

influenza ‘infection’ (see Methods, Table s3). In our challenge

studies there were four major outcome groups despite historical

and immunologic screening and similar inoculations [13]. Most

individuals fall within our two analysis groups – those who are

symptomatic-infected or asymptomatic-uninfected. However, a

few individuals demonstrate mixed phenotypes and are either

symptomatic-uninfected (symptoms but no viral shedding detected,

see Methods) or asymptomatic-infected individuals (never symp-

tomatic but clear viral shedding on multiple days (Table s3). We

have focused this analysis on those subjects with the clear

phenotypes of ‘infected’ and ‘uninfected’ (see Methods for

phenotyping criteria). The development of biomarkers for

asymptomatic-infected and symptomatic-uninfected and a under-

standing their underlying biology would be invaluable, and could

potentially inform our ability to forecast and track epidemics.

However, the numbers of such individuals from the current studies

are insufficient for meaningful analysis at this time.

Influenza-induced host gene expression groups into
unbiased time-evolving factors Whole blood RNA was

isolated from each individual every 8 hours from inoculation

through day 7 and assayed by Affymetrix U133a 2.0 human

microarrays. Co-expressed gene transcript factors were generated

through sparse latent factor regression analysis to provide an

unbiased (unlabeled) examination of gene expression [15]. This

methodology specifically selects gene ‘factors’, with each factor

effectively defining a specific, limited subset of genes that are up-

or down-regulated in a given condition. Sparse latent factor

regression analysis permits an unbiased selection of these co-

regulated genes while simultaneously filtering the tremendous

number of genes tested into smaller, more manageable, biologi-

cally connected subsets (see Methods). Based upon the quantitative

level of over- or under-expression of the individual genes in a

Figure 1. Clinical response to viral challenge. Average symptom scores over time of individuals with both clinical and microbiologically
confirmed infection (symptomatic-infected) following experimental viral inoculation with H1N1 (blue) and H3N2 (red).
doi:10.1371/journal.pone.0052198.g001

Host Genomic Signatures Detect H1N1 Infection
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factor, a factor score is computed for a given factor in a given

sample at a given time. In each individual, the factor score for each

group of co-expressed genes evolve as they progress through the

various stages of disease (Fig. 2a, b). Furthermore, within each

factor, the individual genes themselves exhibit variable expression

over time (Fig. 2c, d, Fig. s2), and therefore each gene’s individual

contribution to a single factor score continuously evolves,

highlighting the complexity of the temporal dynamics of the host

response to influenza challenge. The factor score provides a

coherent representation of the aggregate of these co-expressed

genes at a given time-point allowing for a more manageable means

of expressing biologically relevant genomic variance over time.

A Whole Blood RNA-based Gene Signature Differentiates
Symptomatic Influenza A H1N1 or H3N2 Infection from
Asymptomatic Individuals

Similar to our previous work [4], in each challenge a single

factor emerged as best able to discriminate symptomatic-infected

subjects from asymptomatic-uninfected subjects at the time of

maximal symptoms (Fig. 2). We derived this gene signature or

‘‘Influenza Factor’’ individually for both H1N1 and H3N2 and

found that the signature is highly conserved across the two

different viruses. For H1N1, the derived factor correctly identifies

our phenotypically confirmed individuals exposed to H1N1 as

symptomatic-infected or asymptomatic-uninfected with only a

single misclassification, whereas the H3N2 factor correctly

identifies 100% of individuals exposed to H3N2 with a confirmed

phenotype.

The performance of two separate clinical challenge studies with

closely related viruses permits the validation of the independently

derived gene signatures by testing them on the subjects from the

alternate study. When the factor loadings for H1N1 are applied to

the subjects from the H3N2 study, the H1N1 factor is capable of

accurately discriminating between symptomatic-infected or

asymptomatic-uninfected H3N2 subjects 100% of the time (Fig.

s3). Similarly, when applied to the H1N1 data set, the H3N2

factor correctly identifies 93% (14/15) of the subjects in the H1N1

study as symptomatic-infected or asymptomatic-uninfected. Thus,

each of the independently derived factors for H1N1 or H3N2

performs well when applied to a completely separate data set

comprised of individuals with a similar yet distinct pathogen.

Figure 2. Gene expression signatures expressed through factor scores. An influenza gene expression signature, or factor, evolves over time
in symptomatic individuals (blue dots) and distinguishes between symptomatic and asymptomatic individuals (red dots) for both H1N1 (A) and H3N2
(B) viruses at later time points. Heat maps of the top 50 genes in the discriminative factor for H1N1 (c) and H3N2 (d) as they develop over time are
shown.
doi:10.1371/journal.pone.0052198.g002

Host Genomic Signatures Detect H1N1 Infection
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Discriminatory Factors for H1N1 and H3N2 are Similar
and Include Genes Involved in the Antiviral Response

The gene signatures derived independently for the two different

strains of influenza are highly similar, sharing 44 out of the top 50

genes (88%, Table s4). However, the importance of these few

disparities is unclear, as the discordant genes are not sufficient to

allow for differentiation between the two viruses in our analysis.

When compared to our previous work with HRV and RSV, the

Influenza Factor shares only 65–69% of its genes with factors

describing infection with these other respiratory viruses, suggesting

both common ‘viral URI’ pathways as well as some degree of

etiologic specificity. The majority of the top 50 predictive genes

contained in each factor are known to characterize host response

to viral infection, and include RSAD2, the OAS family, multiple

interferon response elements, the myxovirus-resistance gene MX1,

cytokine response pathways and others [16,17,18]. Many (but not

Figure 3. Gene expression signature trajectory over time. The magnitude of the Influenza Factor varies from inoculation through resolution of
disease, for both H1N1 (A) and H3N2 (B) patients. The average factor score at each timepoint for both symptomatic (blue) and asymptomatic (red)
individuals are shown. The average time of symptom onset (gray dashed line) and maximal symptoms (black dashed line) are depicted.
doi:10.1371/journal.pone.0052198.g003

Host Genomic Signatures Detect H1N1 Infection
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all) of the components of these gene sets can be combined into

networks that putatively describe interactions between factor-

derived genes in canonical inflammatory and antiviral pathways

(Fig. s4). Furthermore, the high degree of similarity and cross-

applicability of the two signatures permit the mathematical

imputation of a combined ‘‘Influenza Factor’’ that retains the

discriminatory characteristics of the individual factors when

applied to both cohorts (Fig. s5).

The Influenza Factor Tracks Closely with Symptom Scores
over Time and is Capable of Identifying Symptomatic-
infected Individuals Before the Time of Maximal Illness

We next sought to define the clinical performance of the

Influenza Factor over time. Just as symptom scores, time of peak

symptoms, and symptom progression vary over time between

individuals (Fig. 1), the rise and fall of the gene expression based

factor score varies as well, and a common factor trajectory can be

mathematically imputed for all symptomatic subjects (Fig. 3a–b).

The trajectory of the Influenza Factor for symptomatic, infected

individuals first begins to diverge from asymptomatic, uninfected

individuals at 35–40% of the elapsed time between inoculation

and the time of maximal symptoms for each individual (38 hours

post-inoculation for H1N1 and 29 hours for H3N2, Fig. 3a–b).

Even in this controlled challenge study among young, healthy

individuals, we find variability in this temporal relationship, similar

to the individual variability seen with symptom scores. In most

symptomatic individuals, the rise, peak, and fall of the factor score

trajectory tends to mimic in character but precede the changes in

the clinical score (Fig. s6). Even with this variability and relatively

limited sample size (9 symptomatic-infected individuals in each

study), the symptomatic-infected factor trajectory diverges by 53

hours (H3N2, p-value = 0.005) and 60 hours (H1N1, p-val-

ue = 0.003) post-inoculation.

We developed Receiver Operating Characteristic (ROC) curves

at each time point to visualize the ability of the Influenza Factor to

discriminate between symptomatic- infected and asymptomatic-

uninfected subjects (Figure s7). For H3N2 infection, the factors can

distinguish between symptomatic and asymptomatic individuals

with a sensitivity of 89% without false positives at 53 hours post-

exposure. By 69 hours post-inoculation the sensitivity is increased

to 100%. For H1N1, this occurs slightly later but by 60 hours post-

exposure the Influenza Factor demonstrates a sensitivity of 89%

without false positives. These time points that the gene signature

first effectively discriminates symptomatic vs. asymptomatic

subjects usually precede or coincide with the time of average first

symptom onset (49 hrs for H3N2 and 61 hours for H1N1), and

occur well before clinically significant symptoms (38 hours before

maximal symptoms for H3N2 and 43 hours for H1N1).

The Influenza Factor Accurately Identifies Pandemic 2009
H1N1 Infections in a Clinical Cohort

In order to assess the validity of the experimentally derived

Influenza Factor to perform in a free-living (non-experimental)

setting we used a cohort of individuals enrolled during the 2009–

10 Influenza season. At that time, we identified 36 individuals who

presented to the Duke University Hospital emergency department

with symptomatic H1N1 infection (confirmed by RT-PCR), and

45 healthy controls. Peripheral blood RNA samples were obtained

from the symptomatic individuals at the time of presentation with

symptomatic respiratory viral infection. The Influenza Factor was

applied to the microarray data derived from the blood RNA

samples and correctly identifies 92% (33/36) of the subjects as

Figure 4. Validation of the Influenza Factor in a real-world cohort of individuals presenting with confirmed swine-origin 2009 A/
H1N1 infection. The Influenza Factor scores distinguish individuals with RT-PCR proven H1N1 infection (N) from healthy individuals (#) as
demonstrated both by factor score and by ROC curve for healthy vs. H1N1 (insert, AUC 0.98).
doi:10.1371/journal.pone.0052198.g004

Host Genomic Signatures Detect H1N1 Infection
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infected with Novel H1N1, and correctly identified 93% (42/45) of

the healthy controls (Fig. 4). Overall, the Influenza Factor

performed with an accuracy of 92.3% in the setting of a real-

world, independent cohort with pandemic 2009 H1N1 infection.

Discussion

We performed two independent human viral challenge studies

(using influenza H1N1 and H3N2) to define the host-based

peripheral blood gene expression patterns characteristic of the

response to influenza infection. The results provide clear evidence

that a biologically relevant peripheral blood gene expression

signature can distinguish influenza infection with a remarkable

degree of accuracy across the two strains. We have also defined the

performance of the blood gene expression signature over time

throughout the complete course of human influenza infection.

Furthermore, despite arising from a controlled experimental

challenge setting, we demonstrate that an influenza signature is

able to accurately identify individuals presenting with naturally-

occurring, RT-PCR confirmed H1N1 infection during the 2009

pandemic.

Defining the etiology of clinical syndromes in which infection is

suspected remains challenging. Currently available influenza

diagnostic tests exhibit highly variable sensitivity, ranging from

53 to 100% in various studies [19,20]. Importantly, even those

with powerful test characteristics such as RT-PCR are dependent

upon sampling technique and inclusion of virus-specific compo-

nents leading to reduced effectiveness with emerging viral strains

[21]. In addition to being less susceptible to sampling error,

genomic signatures are not viral antigen or nucleic acid-

dependent, and unlikely to be as strain-specific as pathogen-based

platforms. Therefore, in addition to high sensitivity in the cohorts

studied [92% (95% CI 79–99% for 2009 H1N1)], influenza gene

signatures have the added potential of being able to identify, in the

acute phase of illness, likely cases of infection with emerging

influenza strains for which a specific diagnostic platform has yet to

be developed and distributed. The nature of challenge studies

limits our ability to make direct comparisons to other infected

states – however, our previous work has demonstrated that

genomic signatures similarly derived from viral challenges are

capable of distinguishing upper respiratory viral infection from

pneumonia due to Streptococcus pneumoniae [4]. These findings are

promising but additional testing of these signatures in other

models, including acute human cases of bacterial infection, will

need to be performed to better delineate their specificity.

The unique design and frequent sampling involved in two

experimental challenge studies has also given us the singular ability

to examine the dynamics of temporal development of the genomic

responses following exposure to infectious virus. We have shown

that when viewed through the lens of the genomic response, it is

possible to correctly distinguish individuals as infected or

uninfected with influenza well before they have clinically relevant

symptoms or would be ill enough to present for clinical evaluation.

The potential power of this approach is manifested by full

discriminative ability of the genomic signature as early as 53 hours

post-viral exposure, at a time when the average clinical score of

symptomatic individuals is only 2.4. Symptoms of this nature and

severity are clinically vague and would be typical of very mild

allergies [22] or even symptoms due to sequelae of chronic

smoking [23]. Therefore, genomic analyses demonstrate the

potential to identify viral infection either before symptoms emerge

or among what otherwise are common, nonspecific upper

respiratory symptoms, when early intervention with antiviral

medications could have profound impact on both individual

symptoms and disease transmission [24,25,26]. Furthermore, we

show that the overall trajectory of the Influenza Factor tracks

closely with symptom scores over time, but also that the observed

genomic response tends to significantly precede changes in clinical

scores in symptomatic individuals. None of our affected individuals

developed severe infection, but the characteristics of the timing

and development of these signatures suggest that, similar to recent

work with Dengue infections [9], genomic signatures may

potentially prove invaluable for predicting clinical outcomes.

However, further longitudinal studies with patients who eventually

exhibit more severe disease will be required to fully assess this

potential.

The nature of the individual components of the genomic

response to influenza infection and the biological pathways they

represent lend plausibility to this discovery. In particular,

interferon stimulated pathways such as those including RSAD2,

IRF7, MX1, OAS3, MDA-5, RIG-I and others are incorporated

and thought to drive both innate and, to a lesser degree, adaptive

immune responses to viral infection [18,27,28,29]. Many of these

pathways are consistent with those identified in acutely ill pediatric

influenza subjects [30] and recent studies of the genomic response

following vaccination with live, attenuated influenza vaccine

reported a profile of ‘immune activation’ which shares a number

of genes with the Influenza Factor described here [31,32].

Interestingly, a few genes which consistently feature prominently

in the Influenza Factor are not clearly tied to inflammatory or

immunologic pathways, and their significance remains unclear.

Previously published work with bacterial respiratory infections has

yielded quite different genomic results [4,5] suggesting that some

aspects of the host response are specific at least for major classes of

pathogens (e.g., viral vs. bacterial). The genomic pathways

identified suggest we are largely measuring indicators of the

development/amplification of the immune response to the virus

similar to previous work [13,16,32], and that these indicators

parallel (and usually precede) clinical symptom development in

time. The immunologic pathways observed in these studies that

are known to be commonly activated early on at the primary site

of infection (i.e., respiratory epithelium) [29,33], exhibit relatively

delayed appearance in the periphery. This delay seems logical, as

early innate responses at the site of infection would be expected to

have an initially minor impact on global peripheral gene

expression. At very early time-points (,53 hrs following exposure)

insufficient numbers of peripheral cells are undergoing the

conserved stimulation required to produce a significant change

in global gene expression, at least as detected by microarray

analysis. This raises the possibility that more sensitive methods of

detecting genomic changes, such as individual cell-type sampling

or RT-PCR of select genes, will prove to be even more precise at

early time points in the evolution of viral infection. Additional

work will be essential (and is underway) to further define the

nature and biological implications of these data, as well as to work

towards development of a more practical means of assaying these

changes in the clinical setting, such as RT-PCR of select ‘core’

genes from signatures like the one described herein.

Clearly, great care must be taken when analyzing and applying

host genomic data from human challenge studies where the means

of transmission of the virus is experimentally designed rather than

‘natural’, and the degree of illness which follows is not always

typical of the severity seen in naturally acquired infection in

subjects who present for clinical care, even though it does tend to

mimic the overall character of natural clinical disease [13]. Hosts

in these studies are universally young, healthy individuals at

minimal risk for developing severe complications, which may limit

the broad applicability of such findings, although this is somewhat

Host Genomic Signatures Detect H1N1 Infection
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mitigated by the strong performance of the gene signatures despite

significant clinical variability in infected subjects. It is also

important to note that while this type of factor analysis allows

for description of conserved biological pathways indicative of

influenza infection, a given factor only represents a limited

interrelated subset of all genes that are globally up- or down-

regulated in response to a given condition, and thus does not

describe the entirety of the genomic response.

Despite these limitations, we have for the first time defined the

temporal dynamics of a genomic signature driving the host

response to influenza infection in humans. These molecular and

statistical techniques combined with the ability to longitudinally

study exposed human hosts have given us the opportunity to

examine periods of human disease which have previously been

largely unexplored. Moreover, despite being developed in an

experimental challenge model, this host genomic signature

performs at a high level of accuracy in the setting of naturally

acquired pandemic 2009 H1N1 infection. This work demonstrates

that analyses of the temporal development of gene expression

signatures shows promise both for creating diagnostics for early

detection, as well as providing insight into the biology of the host

response to influenza and other pathogens.

Materials and Methods

Institutional Review Board Approvals
The Influenza challenge protocols were approved by the East

London and City Research Ethics. Committee 1 (London, UK),

an independent institutional review board (WIRB: Western.

Institutional Review Board; Olympia, WA), the IRB of Duke

University Medical Center. (Durham, NC), and the SSC-SD IRB

(US Department of Defense; Washington, DC) and were

conducted in accordance with the Declaration of Helsinki. All

subjects enrolled in viral challenge studies provided written

informed consent per standard IRB protocol. Funding for this

study was provided by the US Defense Advanced Research

Projects Agency (DARPA) through contract N66001-07-C-2024

(P.I., Ginsburg).

Human Viral Challenges
In collaboration with Retroscreen Virology, Ltd (London, UK),

we intranasally inoculated 24 healthy volunteers with influenza A

H1N1 (A/Brisbane/59/2007). All volunteers provided informed

consent and underwent extensive pre-enrollment health screening,

including baseline antibody titers to the specific strains of influenza

utilized. After 24 hrs in quarantine, we instilled one of four

dilutions (1:10, 1:100, 1:1000, 1:10000) of 107 TCID50 influenza A

into bilateral nares of subjects (groups of 4–6 for each dilution)

using standard methods. [4] The virus was manufactured and

processed under current good manufacturing practices (cGMP) by

Baxter BioScience, (Vienna, Austria). At pre-determined intervals

(q8h for the first 5d following inoculation), we collected blood into

RNA PAXGeneTM collection tubes (PreAnalytix; Franklin Lakes,

NJ) according to manufacturers’ specifications. We obtained nasal

lavage samples from each subject daily for qualitative viral culture

and and/or quantitative influenza RT-PCR to assess the success

and timing of infection [34]. Blood and nasal lavage collection

continued throughout the duration of the quarantine. All subjects

received oral oseltamivir (Roche Pharmaceuticals) 75 mg by

mouth twice daily as treatment or prophylaxis at day 6 following

inoculation. All subjects were negative by rapid antigen detection

(BinaxNow Rapid Influenza Antigen; Inverness Medical Innova-

tions, Inc) at time of discharge. Detailed methods of the H3N2

Challenge study have been reported previously [4,14].

Clinical Case Definitions
Symptoms were recorded twice daily using a modified

standardized symptom score [35]. The modified Jackson Score

requires subjects to rank symptoms of upper respiratory infection

(stuffy nose, scratchy throat, headache, cough, etc) on a scale of 0–

3 of ‘‘no symptoms’’, ‘‘just noticeable’’, ‘‘bothersome but can still

do activities’’ and ‘‘bothersome and cannot do daily activities’’.

For all cohorts, modified Jackson scores were tabulated to

determine if subjects became symptomatic from the respiratory

viral challenge. Symptom onset was defined as the first of 2

contiguous days with score of 2 or more. A modified Jackson score

of $6 over a consecutive five day period was the primary indicator

of symptomatic viral infection [36] and subjects with this score and

a positive qualitative viral culture or quantitative RT-PCR for at

least 2 consecutive days (beginning 24 hours after inoculation)

were denoted as ’’symptomatic infection’’ and included in the

signature performance analyses. [35,36,37]. Subjects were classi-

fied as ‘‘asymptomatic, not infected’’ if the symptom score was less

than 6 over the five days of observation and viral shedding was not

documented after the first 24 hours subsequent to inoculation as

above. Standardized symptom scores were tabulated at the end of

each study to determine attack rate and time of maximal

symptoms. Some subjects in each study (2 H3N2 and 8 H1N1

subjects) demonstrated an overall picture that fell in between these

two categories. These individuals were either ‘asymptomatic viral

shedders’ (2 H3N2 and 5 H1N1) or ‘symptomatic non-viral

shedders’ (0 H3N2 and 3 H1N1). One additional individual in the

H1N1 study was excluded due to additional infection acquired

during the study. Given the heterogeneity of their overall ‘infected’

status these individuals were not included in performance analyses.

Pandemic 2009 H1N1 Real-World Cohort
Subjects were recruited from the Duke University Medical

Center Emergency Department (DUMC-Level 1 Trauma Center

with annual census of 65,000). This study was approved by the

Institutional Review Board at each institution and written,

informed consent was obtained by all study participants or their

legal designates. Subjects were screened between September 1 and

December 31, 2009. Subjects were considered for the enrollment if

they had a known or suspected influenza infection on the basis of

clinical data at the time of screening and if they exhibited two or

more signs of systemic inflammation (SIRS) within a 24-hour

period. Subjects were excluded if ,18 years old, if they had an

imminently terminal co-morbid condition, if they had recently

been treated with an antibiotic for a viral, bacterial, or fungal

infection, or if they were participating in an ongoing clinical trial.

Trained study coordinators at each site reviewed and abstracted

vital signs, microbiology, laboratory, and imaging results from the

initial ED encounter and at 24-hour intervals if patient was

admitted. Following hospital discharge, research personnel

abstracted the duration of hospitalization, length of ICU stay,

in-hospital mortality, timing and appropriateness of antimicrobial

administration, and microbiologic-culture results from the medical

record. In addition to residual respiratory samples collected as part

of routine care, an NP swab was collected from each enrolled

subject. Total nucleic acids were extracted from nasal swab or

wash isolates with the EZ1 Biorobot and the EZ1 Virus Mini Kit

v2.0 (Qiagen). 2009 H1N1 virus was confirmed in 20 ul detection

reactions, Qiagen One-Step RT-PCR (Qiagen) reagents on a

LightCycler v2.0 (Roche) using the settings and conditions

recommended in the CDC Realtime RTPCR (rRTPCR) Protocol

for Detection and Characterization of Swine Influenza (version

2009). The primers and probes were as described in the CDC

protocol and obtained from Integrated DNA Technologies. We
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included mRNA expression data obtained concurrently with the

H1N1 cohort from 45 gender-matched, healthy controls.

RNA Purification and Microarray Analysis
For each challenge, we collected peripheral blood at 24 hours

prior to inoculation with virus (baseline), immediately prior to

inoculation (pre-challenge) and at set intervals following challenge.

RNA was extracted at Expression Analysis (Durham, NC) from

whole blood using the PAXgeneTM 96 Blood RNA Kit

(PreAnalytiX, Valencia, CA) employing the manufacturer’s

recommended protocol. Complete methodology can be viewed

in the Methods S1. Hybridization and microarray data collection

was also performed at Expression Analysis (Durham, NC) using

the GeneChipH Human Genome U133A 2.0 Array (Affymetrix,

Santa Clara, CA). Microarray data used for this study will be

deposited in GEO prior to publication.

Statistical Analyses
Following RMA normalization of raw probe data, sparse latent

factor regression analysis was applied to each dataset

[38,39,40,41]. This reduces the dimensionality of the complex

gene expression array dataset assuming that many of the probe sets

on the expression array chip are highly interrelated (targeting the

same genes or genes in the same pathways). Dimension reduction

is performed by constructing factors (groups of genes with related

expression values). These factors are used in a sparse linear

regression framework to explain the variation seen in all of the

probe sets. By default, most of the coefficients in this linear

regression are zero. Thus, a small number (e.g., 50) of factors

explain variation seen in any single dataset.

Factor loadings are defined as the coefficients of the factor

regression, and, to explore the biological relevance any particular

factor, we examine the genes that are "in" that factor – the genes

that show significantly non-zero factor loadings. ‘‘Factor scores"

are defined as the vector that best describes the co-expression of

the genes in a particular factor. Both factor loadings and factor

scores are fit to the data concurrently, and the full details of the

process can be found in the supplementary statistical analysis

section. While 50 factors were used for the results reported here,

we also considered 20, 30 and 40, with minimal effect on the

significant factor loadings. Notably, the initial models built to

determine factors that distinguish symptomatic infected individuals

from asymptomatic individuals were derived using an unsupervised

process (i.e., the model classified subjects based on gene expression

pattern alone, without a priori knowledge of infection status).

Our statistical model is unsupervised, and thus seeks to describe

the statistical properties of the expression data without using

labeled data. Such unsupervised algorithms may uncover statistical

characteristics that distinguish symptomatic and asymptomatic

subjects, but this relationship is inferred a posteriori. The

unsupervised models are not explicitly designed to perform

classification. The specific unsupervised model employed here

corresponds to Bayesian factor analysis. This model represents the

gene-expression values of each sample in terms of a linear

combination of factors. Within the model we impose that each

factor is sparse, meaning that only a relatively small fraction of the

genes have non-zero expression within the factor loading. This

sparseness seeks to map each factor to a biological pathway by

identifying genes which are co-expressed, and each pathway is

assumed to be represented in terms of a small fraction of the total

number of genes. The number of factors appropriate for the data

is inferred, using a statistical tool termed the beta process [15]. We

have found that, for the virus data considered here, the factor

score associated with one of these factors is a good marker as to

whether the sample will be symptomatic, but we underscore that

this symptomatic/asymptomatic information is not employed in

the model.

Supporting Information

Figure S1 For the H1N1 Challenge Trial, individual
symptom scores of symptomatic infected patients from
the time of inoculation (time 0) through the end of the
study.
(PDF)

Figure S2 Variation over time of the expression of the
top 30 individual genes which make up the Influenza
factor.
(PDF)

Figure S3 Cross-validation of H1N1 (Top) and H3N2
(Bottom) derived factors.
(PDF)

Figure S4 Genes comprising the discriminative. Factor

for Influenza infection are involved in canonical antiviral

pathways, such as the STAT-1 dependent portions of Interferon-

response and dsRNA-induced innate signaling depicted here (top),

and the IRF-7 and RIG-I, MDA-5 dependent portions of

Interferon-response and ssRNA-induced innate signaling (bottom,

www.genego.com). Pathways impacted by genes from the

discriminative Factors are marked with a red target symbol.

(PDF)

Figure S5 Temporal development of the combined
Influenza Factor applied to H1N1 (pp top) and H3N2
(bottom) cohorts.
(PDF)

Figure S6 Influenza Factor score compared with clinical
symptom score over time for all individuals in the study.
(PDF)

Figure S7 Performance of the Influenza Factor. The

Influenza Factor develops accurate discriminative utility early in

the course of influenza infection, as illustrated by ROC curves for

the Factor at each successive timepoint. Depicted are: H1N1-

derived Factor applied to H1N1 subjects (A), H3N2 Factor applied

to H1N1 subjects (B), H1N1 Factor applied to H3N2 subjects (C),

and the H3N2 Factor applied to H3N2 subjects (D).

(PDF)

Table S1 Patient demographics and pre-challenge se-
rology for HAI titers to challenge viruse (H1N1). Unique

ID’s in Blue indicate ‘symptomatic infected’ individuals.

(PDF)

Table S2 Patient demographics and pre-challenge se-
rology for HAI titers to challenge viruse (H3N2). Unique
ID’s in Blue indicate ‘symptomatic infected’ individuals.
(PDF)

Table S3 Complete subject list for both H1N1 and H3N2
viral challenge trials, with total symptom scores and
clinical/virologic classifications.
(PDF)

Table S4 Comparison of the top 50 genes from the
discriminative factors derived from H1N1 and H3N2
challenge trials, ranked by order of individual contri-
bution to the strength of the Factor (highest contributors
at the top).
(PDF)
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Methods S1 Additional material defining the statistical
models used are presented.

(PDF)
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